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1 Scope of the Chapter

This chapter is concerned with the numerical solution of partial differential equations. Currently only
solvers for parabolic and hyperbolic equations are included.

2 Background to the Problems

The definition of a partial differential equation problem includes not only the equation itself but also the
domain of interest and appropriate subsidiary conditions. Indeed, partial differential equations are usually
classified as elliptic, hyperbolic or parabolic according to the form of the equation and the form of the
subsidiary conditions which must be assigned to produce a well-posed problem. The functions in this
chapter will often call upon functions from other chapters, such as Chapter f04 (Simultaneous Linear
Equations) and Chapter d02 (Ordinary Differential Equations). Other chapters also contain relevant
functions, in particular Chapter d06 (Mesh Generation) and Chapter f11 (Sparse Linear Algebra).

The classification of partial differential equations is easily described in the case of linear equations of the
second order in two independent variables, i.e., equations of the form

auxx þ 2buxy þ cuyy þ dux þ euy þ fuþ g ¼ 0; ð1Þ

where a, b, c, d, e, f and g are functions of x and y only. Equation (1) is called elliptic, hyperbolic or

parabolic according to whether ac� b2 is positive, negative or zero, respectively. Useful definitions of the
concepts of elliptic, hyperbolic and parabolic character can also be given for differential equations in more
than two independent variables, for systems and for nonlinear differential equations.

For elliptic equations, of which Laplace’s equation

uxx þ uyy ¼ 0 ð2Þ

is the simplest example of second order, the subsidiary conditions take the form of boundary conditions,
i.e., conditions which provide information about the solution at all points of a closed boundary. For
example, if equation (2) holds in a plane domain D bounded by a contour C, a solution u may be sought
subject to the condition

u ¼ f on C; ð3Þ
where f is a given function. The condition (3) is known as a Dirichlet boundary condition. Equally
common is the Neumann boundary condition

u0 ¼ g on C; ð4Þ
which is one form of a more general condition

u0 þ fu ¼ g on C; ð5Þ

where u0 denotes the derivative of u normal to the contour C, and f and g are given functions. Provided
that f and g satisfy certain restrictions, condition (5) yields a well-posed boundary value problem for
Laplace’s equation. In the case of the Neumann problem, one further piece of information, e.g., the value
of u at a particular point, is necessary for uniqueness of the solution. Boundary conditions similar to the
above are applicable to more general second-order elliptic equations, whilst two such conditions are
required for equations of fourth order.

For hyperbolic equations, the wave equation

utt � uxx ¼ 0 ð6Þ
is the simplest example of second order. It is equivalent to a first-order system

ut � vx ¼ 0; vt � ux ¼ 0: ð7Þ
The subsidiary conditions may take the form of initial conditions, i.e., conditions which provide
information about the solution at points on a suitable open boundary. For example, if equation (6) is
satisfied for t > 0, a solution u may be sought such that

uðx; 0Þ ¼ fðxÞ; utðx; 0Þ ¼ gðxÞ; ð8Þ
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where f and g are given functions. This is an example of an initial value problem, sometimes known as
Cauchy’s problem.

For parabolic equations, of which the heat conduction equation

ut � uxx ¼ 0 ð9Þ
is the simplest example, the subsidiary conditions always include some of initial type and may also include
some of boundary type. For example, if equation (9) is satisfied for t > 0 and 0 < x < 1, a solution u
may be sought such that

uðx; 0Þ ¼ fðxÞ; 0 < x < 1; ð10Þ
and

uð0; tÞ ¼ 0; uð1; tÞ ¼ 1; t > 0: ð11Þ
This is an example of a mixed initial/boundary value problem.

For all types of partial differential equations, finite difference methods (Mitchell and Griffiths (1980)) and
finite element methods (Wait and Mitchell (1985)) are the most common means of solution and such
methods obviously feature prominently either in this chapter or in the companion NAG Finite Element
Library. Some of the utility functions in this chapter are concerned with the solution of the large sparse
systems of equations which arise from finite difference and finite element methods. Further functions for
this purpose are provided in Chapter f11.

Alternative methods of solution are often suitable for special classes of problems. For example, the
method of characteristics is the most common for hyperbolic equations involving time and one space
dimension (Smith (1985)). The method of lines (see Mikhlin and Smolitsky (1967)) may be used to
reduce a parabolic equation to a (stiff) system of ordinary differential equations, which may be solved by
means of functions from Chapter d02 (Ordinary Differential Equations). Similarly, integral equation or
boundary element methods (Jaswon and Symm (1977)) are frequently used for elliptic equations.
Typically, in the latter case, the solution of a boundary value problem is represented in terms of certain
boundary functions by an integral expression which satisfies the differential equation throughout the
relevant domain. The boundary functions are obtained by applying the given boundary conditions to this
representation. Implementation of this method necessitates discretization of only the boundary of the
domain, the dimensionality of the problem thus being effectively reduced by one. The boundary
conditions yield a full system of simultaneous equations, as opposed to the sparse systems yielded by finite
difference and finite element methods, but the full system is usually of much lower order. Solution of this
system yields the boundary functions, from which the solution of the problem may be obtained, by
quadrature, as and where required.

3 Recommendations on Choice and Use of Available Functions

3.1 Hyperbolic Equations

See Section 3.5.

3.2 Parabolic Equations

There are five functions available for solving general parabolic equations in one space dimension:

nag_pde_parab_1d_fd (d03pcc),

nag_pde_parab_1d_coll (d03pdc),

nag_pde_parab_1d_fd_ode (d03phc),

nag_pde_parab_1d_coll_ode (d03pjc),

nag_pde_parab_1d_fd_ode_remesh (d03ppc).

Equations may include nonlinear terms but the true derivative ut should occur linearly and equations
should usually contain a second-order space derivative uxx. There are certain restrictions on the
coefficients to try to ensure that the problems posed can be solved by the above functions.
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The method of solution is to discretize the space derivatives using finite differences or collocation, and to
solve the resulting system of ordinary differential equations using a ‘stiff’ solver.

nag_pde_parab_1d_fd (d03pcc) and nag_pde_parab_1d_coll (d03pdc) can solve a system of parabolic
equations of the form

Xn

j¼1

Pijðx; t; U; UxÞ
@Uj

@t
þQiðx; t; U; UxÞ ¼ x�m @

@x
ðxmRiðx; t; U; UxÞÞ;

where i ¼ 1; 2; . . . ; n, a � x � b, t � t0.

The parameter m allows the function to handle different coordinate systems easily (Cartesian, cylindrical
polars and spherical polars). nag_pde_parab_1d_fd (d03pcc) uses a finite differences spatial discretization
and nag_pde_parab_1d_coll (d03pdc) uses a collocation spatial discretization.

nag_pde_parab_1d_fd_ode (d03phc) and nag_pde_parab_1d_coll_ode (d03pjc) are similar to
nag_pde_parab_1d_fd (d03pcc) and nag_pde_parab_1d_coll (d03pdc) respectively, except that they
provide scope for coupled differential-algebraic systems. This extended functionality allows for the
solution of more complex and more general problems, e.g., periodic boundary conditions and integro-
differential equations.

nag_pde_parab_1d_fd_ode_remesh (d03ppc) is similar to nag_pde_parab_1d_fd_ode (d03phc) but allows
remeshing to take place in the spatial direction. This facility can be very useful when the nature of the
solution in the spatial direction varies considerably over time.

3.3 Black–Scholes Equations

nag_pde_bs_1d (d03ncc) solves the Black–Scholes equation

@f

@t
þ ðr� qÞS @f

@S
þ �2S2

2

@2f

@S2
¼ rf

Smin < S < Smax; tmin < t < tmax;

for the value f of a European or American, put or call stock option. The parameters r, q and � may each
be either constant or time-dependent. The values of the Greeks are also returned.

In certain cases an analytic solution of the Black–Scholes equation is available. In these cases the solution
may be computed by nag_pde_bs_1d_analytic (d03ndc).

3.4 First-order Systems in One Space Dimension

There are three functions available for solving systems of first-order partial differential equations:

nag_pde_parab_1d_keller (d03pec),

nag_pde_parab_1d_keller_ode (d03pkc),

nag_pde_parab_1d_keller_ode_remesh (d03prc).

Equations may include nonlinear terms but the time derivative should occur linearly. There are certain
restrictions on the coefficients to ensure that the problems posed can be solved by the above functions.

The method of solution is to discretize the space derivatives using the Keller box scheme and to solve the
resulting system of ordinary differential equations using a ‘stiff’ solver.

nag_pde_parab_1d_keller (d03pec) is designed to solve a system of the form

Xn

j¼1

Pijðx; t; U; UxÞ
@Uj

@t
þQiðx; t; U; UxÞ ¼ 0;

where i ¼ 1; 2; . . . ; n, a � x � b, t � t0.

nag_pde_parab_1d_keller_ode (d03pkc) is similar to nag_pde_parab_1d_keller (d03pec) except that it
provides scope for coupled differential algebraic systems. This extended functionality allows for the
solution of more complex problems.
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nag_pde_parab_1d_keller_ode_remesh (d03prc) is similar to nag_pde_parab_1d_keller_ode (d03pkc) but
allows remeshing to take place in the spatial direction. This facility can be very useful when the nature of
the solution in the spatial direction varies considerably over time.

nag_pde_parab_1d_keller (d03pec), nag_pde_parab_1d_keller_ode (d03pkc) or
nag_pde_parab_1d_keller_ode_remesh (d03prc) may also be used to solve systems of higher or mixed
order partial differential equations which have been reduced to first-order. Note that in general these
functions are unsuitable for hyperbolic first-order equations, for which an appropriate upwind discretization
scheme should be used (see Section 3.5 for example).

3.5 Convection-diffusion Systems

There are three functions available for solving systems of convection-diffusion equations with optional
source terms:

nag_pde_parab_1d_cd (d03pfc),

nag_pde_parab_1d_cd_ode (d03plc),

nag_pde_parab_1d_cd_ode_remesh (d03psc).

Equations may include nonlinear terms but the time derivative should occur linearly. There are certain
restrictions on the coefficients to ensure that the problems posed can be solved by the above functions, in
particular the system must be posed in conservative form (see below). The functions may also be used to
solve hyperbolic convection-only systems.

Convection terms are discretized using an upwind scheme involving a numerical flux function based on the
solution of a Riemann problem at each mesh point (LeVeque (1990)); and diffusion and source terms are
discretized using central differences. The resulting system of ordinary differential equations is solved
using a ‘stiff’ solver. In the case of Euler equations for a perfect gas various approximate and exact
Riemann solvers are provided in nag_pde_parab_1d_euler_roe (d03puc), nag_pde_parab_1d_euler_osher
(d03pvc), nag_pde_parab_1d_euler_hll (d03pwc) and nag_pde_parab_1d_euler_exact (d03pxc). These
functions may be used in conjunction with nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_cd_ode
(d03plc) and nag_pde_parab_1d_cd_ode_remesh (d03psc).

nag_pde_parab_1d_cd (d03pfc) is designed to solve systems of the form

Xn

j¼1

Pijðx; t; UÞ
@Uj

@t
þ @

@x
Fiðx; t; UÞ ¼ Ciðx; t; UÞ @

@x
Diðx; t; U; UxÞ þ Siðx; t; UÞ;

or hyperbolic convection-only systems of the form

Xn

j¼1

Pijðx; t; UÞ
@Uj

@t
þ @F iðx; t; UÞ

@x
¼ 0;

where i ¼ 1; 2; . . . ; n, a � x � b, t � t0.

nag_pde_parab_1d_cd_ode (d03plc) is similar to nag_pde_parab_1d_cd (d03pfc) except that it provides
scope for coupled differential algebraic systems. This extended functionality allows for the solution of
more complex problems.

nag_pde_parab_1d_cd_ode_remesh (d03psc) is similar to nag_pde_parab_1d_cd_ode (d03plc) but allows
remeshing to take place in the spatial direction. This facility can be very useful when the nature of the
solution in the spatial direction varies considerably over time.

3.6 Automatic Mesh Generation

A range of mesh generation functions are available in Chapter d06.

3.7 Utility Functions

Functions are available in the Linear Algebra Chapters for the direct and iterative solution of linear
equations. Here we point to some of the functions that may be of use in solving the linear systems that
arise from finite difference or finite element approximations to partial differential equation solutions.
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Chapters f11 should be consulted for further information and for the appropriate function documents.
Decision trees for the solution of linear systems are given in Section 4 of the f04 Chapter Introduction.

The following functions allow the direct solution of symmetric positive-definite systems:

Band nag_dpbtrf (f07hdc) and nag_dpbtrs (f07hec)

Variable band (skyline) nag_real_cholesky_skyline (f01mcc) and nag_real_cholesky_skyline_solve
(f04mcc)

and the following functions allow the iterative solution of symmetric positive-definite and symmetric-
indefinite systems:

Sparse nag_sparse_sym_chol_fac (f11jac), nag_sparse_sym_chol_sol (f11jcc) and
nag_sparse_sym_sol (f11jec)

The latter two functions above are black box functions which include Incomplete Cholesky, SSOR or
Jacobi preconditioning.

The following functions allow the direct solution of nonsymmetric systems:

Band nag_dgbtrf (f07bdc) and nag_dgbtrs (f07bec)

and the following functions allow the iterative solution of nonsymmetric systems:

Sparse nag_sparse_nsym_fac (f11dac), nag_sparse_nsym_fac_sol (f11dcc) and
nag_sparse_nsym_sol (f11dec)

The latter two functions above are black box functions which include incomplete LU, SSOR and Jacobi
preconditioning.

The functions nag_pde_interp_1d_fd (d03pzc) and nag_pde_interp_1d_coll (d03pyc) use linear interpola-
tion to compute the solution to a parabolic problem and its first derivative at the user-specified points.
nag_pde_interp_1d_fd (d03pzc) may be used in conjunction with nag_pde_parab_1d_fd (d03pcc),
nag_pde_parab_1d_keller (d03pec), nag_pde_parab_1d_fd_ode (d03phc), nag_pde_parab_1d_keller_ode
(d03pkc), nag_pde_parab_1d_fd_ode_remesh (d03ppc) and nag_pde_parab_1d_keller_ode_remesh
(d03prc). nag_pde_interp_1d_coll (d03pyc) may be used in conjunction with nag_pde_parab_1d_coll
(d03pdc) and nag_pde_parab_1d_coll_ode (d03pjc).
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4 Decision Trees

Tree 1

Does PDE
have a time
derivative?

yes

Does PDE
have 2nd
derivatives?

yes

see Tree 3:
Parabolic
branch

no

Is PDE
hyperbolic? yes

see Tree 2:
Hyperbolic
branch

no

1 space
dimension? yes

Does PDE
have coupled
ODEs?

yes

Is a remeshing
process
required?

yes
d03prc

no

d03pkc

no

d03pec

no

N/A

no

No elliptic
solvers
currently
available.

Tree 2: Hyperbolic branch

1 space dimension? yes
Does PDE have
coupled ODEs? yes

Is a remeshing
process required? yes

d03psc

no

d03plc

no

d03pfc

no

N/A
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Tree 3: Parabolic branch

1 space
dimension? yes

Is PDE the
Black–Scholes
equations?

yes
d03ncc or
d03ndc

no

Is PDE in
conservative
form?

yes

Does PDE
have coupled
ODEs?

yes

Is a remeshing
process
required?

yes
d03psc

no

d03plc

no

d03pfc

no

see Tree 4:
Branch for

parabolic PDE
in non-

conservative
form

no

N/A

Tree 4: Branch for parabolic PDE in non-conservative form

Do you want to use
finite differences? yes

Does PDE have
coupled ODEs? yes

Is a remeshing
process required? yes

d03ppc

no

d03phc

no

d03pcc

no

Do you want to use
Chebyshev
collocation?

yes
Does PDE have
coupled ODEs? yes

d03pjc

no

d03pdc

no

N/A

Introduction – d03 NAG C Library Manual

d03.8 [NP3645/7]



5 Index

Black–Scholes equation
analytic ....................................................................................... nag_pde_bs_1d_analytic (d03ndc)
finite difference ............................................................................................. nag_pde_bs_1d (d03ncc)

Convection-diffusion system(s),
nonlinear,

one space dimension
using upwind difference scheme based on Riemann solvers nag_pde_parab_1d_cd (d03pfc)

First order system(s),
nonlinear,

one space dimension
using Keller box scheme .............................................. nag_pde_parab_1d_keller (d03pec)

Utility functions
Average values for nag_pde_bs_1d_analytic (d03ndc) ................... nag_pde_bs_1d_means (d03nec)
Exact Riemann solver for Euler equations ................... nag_pde_parab_1d_euler_exact (d03pxc)
HLL Riemann solver for Euler equations ........................ nag_pde_parab_1d_euler_hll (d03pwc)
interpolation function for collocation scheme .......................... nag_pde_interp_1d_coll (d03pyc)
interpolation function for finite difference,

Keller box and upwind scheme ............................................... nag_pde_interp_1d_fd (d03pzc)
Osher’s Riemann solver for Euler equations ............... nag_pde_parab_1d_euler_osher (d03pvc)
Roe’s Riemann solver for Euler equations ....................... nag_pde_parab_1d_euler_roe (d03puc)

6 Functions Withdrawn or Scheduled for Withdrawal

None.
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