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1  Scope of the Chapter

This chapter is concerned with the numerical solution of partial differential equations. Currently only
solvers for parabolic and hyperbolic equations are included.

2 Background to the Problems

The definition of a partial differential equation problem includes not only the equation itself but also the
domain of interest and appropriate subsidiary conditions. Indeed, partial differential equations are usually
classified as elliptic, hyperbolic or parabolic according to the form of the equation and the form of the
subsidiary conditions which must be assigned to produce a well-posed problem. The functions in this
chapter will often call upon functions from other chapters, such as Chapter f04 (Simultaneous Linear
Equations) and Chapter d02 (Ordinary Differential Equations). Other chapters also contain relevant
functions, in particular Chapter d06 (Mesh Generation) and Chapter f11 (Sparse Linear Algebra).

The classification of partial differential equations is easily described in the case of linear equations of the
second order in two independent variables, i.e., equations of the form

iy, + 2buy, + cu,, + du, + eu, + fu+g =0, (1)

where a, b, ¢, d, e, f and g are functions of x and y only. Equation (1) is called elliptic, hyperbolic or

parabolic according to whether ac — b” is positive, negative or zero, respectively. Useful definitions of the
concepts of elliptic, hyperbolic and parabolic character can also be given for differential equations in more
than two independent variables, for systems and for nonlinear differential equations.

For elliptic equations, of which Laplace’s equation
Uy + uyy =0 (2)

is the simplest example of second order, the subsidiary conditions take the form of boundary conditions,
i.e., conditions which provide information about the solution at all points of a closed boundary. For
example, if equation (2) holds in a plane domain D bounded by a contour C, a solution u may be sought
subject to the condition

u=f on C, (3)

where f is a given function. The condition (3) is known as a Dirichlet boundary condition. Equally
common is the Neumann boundary condition

u=g on C, (4)
which is one form of a more general condition
W+ fu=g on C, (5)

where ' denotes the derivative of u normal to the contour C, and f and g are given functions. Provided
that f and ¢ satisfy certain restrictions, condition (5) yields a well-posed boundary value problem for
Laplace’s equation. In the case of the Neumann problem, one further piece of information, e.g., the value
of w at a particular point, is necessary for uniqueness of the solution. Boundary conditions similar to the
above are applicable to more general second-order elliptic equations, whilst two such conditions are
required for equations of fourth order.

For hyperbolic equations, the wave equation
Ut — Ugy = 0 (6)
is the simplest example of second order. It is equivalent to a first-order system
w—v, =0, v, —u,=0. (7)

The subsidiary conditions may take the form of initial conditions, i.e., conditions which provide
information about the solution at points on a suitable open boundary. For example, if equation (6) is
satisfied for ¢ > 0, a solution v may be sought such that

u(x, 0) = f(x)a ut(x’ 0) = g($), (8)
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where f and g are given functions. This is an example of an initial value problem, sometimes known as
Cauchy’s problem.

For parabolic equations, of which the heat conduction equation
Ut — Ugy = 0 (9)

is the simplest example, the subsidiary conditions always include some of initial type and may also include
some of boundary type. For example, if equation (9) is satisfied for ¢t > 0 and 0 < z < 1, a solution u
may be sought such that

u(z,0) = f(x), 0<z<l, (10)
and
w(0,t) =0, w(l,t)=1, t>0. (11)
This is an example of a mixed initial/boundary value problem.

For all types of partial differential equations, finite difference methods (Mitchell and Griffiths (1980)) and
finite element methods (Wait and Mitchell (1985)) are the most common means of solution and such
methods obviously feature prominently either in this chapter or in the companion NAG Finite Element
Library. Some of the utility functions in this chapter are concerned with the solution of the large sparse
systems of equations which arise from finite difference and finite element methods. Further functions for
this purpose are provided in Chapter f11.

Alternative methods of solution are often suitable for special classes of problems. For example, the
method of characteristics is the most common for hyperbolic equations involving time and one space
dimension (Smith (1985)). The method of lines (see Mikhlin and Smolitsky (1967)) may be used to
reduce a parabolic equation to a (stiff) system of ordinary differential equations, which may be solved by
means of functions from Chapter d02 (Ordinary Differential Equations). Similarly, integral equation or
boundary element methods (Jaswon and Symm (1977)) are frequently used for elliptic equations.
Typically, in the latter case, the solution of a boundary value problem is represented in terms of certain
boundary functions by an integral expression which satisfies the differential equation throughout the
relevant domain. The boundary functions are obtained by applying the given boundary conditions to this
representation. Implementation of this method necessitates discretization of only the boundary of the
domain, the dimensionality of the problem thus being effectively reduced by one. The boundary
conditions yield a full system of simultaneous equations, as opposed to the sparse systems yielded by finite
difference and finite element methods, but the full system is usually of much lower order. Solution of this
system yields the boundary functions, from which the solution of the problem may be obtained, by
quadrature, as and where required.

3 Recommendations on Choice and Use of Available Functions

3.1 Hyperbolic Equations
See Section 3.5.

3.2 Parabolic Equations
There are five functions available for solving general parabolic equations in one space dimension:
nag pde parab_1d fd (d03pcc),
nag_pde parab_1d coll (d03pdc),
nag pde parab 1d fd ode (d03phc),
nag_pde parab_1d coll _ode (d03pjc),
nag pde parab _1d fd ode remesh (d03ppc).

Equations may include nonlinear terms but the true derivative w, should occur linearly and equations
should usually contain a second-order space derivative wu,,. There are certain restrictions on the
coefficients to try to ensure that the problems posed can be solved by the above functions.
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The method of solution is to discretize the space derivatives using finite differences or collocation, and to
solve the resulting system of ordinary differential equations using a ‘stiff” solver.

nag pde parab_1d fd (d03pcc) and nag pde parab 1d coll (d03pdc) can solve a system of parabolic
equations of the form

U, 0
;Plj(x7t7 U7 U.{')a—t/—'— Qi(x7t7 U; U.’I;) =T %(l‘ Ri(%,t, l’]’7 UJ'))7

where i = 1,2,...,n, a <x < b, t >t,.

The parameter m allows the function to handle different coordinate systems easily (Cartesian, cylindrical
polars and spherical polars). nag pde parab 1d fd (d03pcc) uses a finite differences spatial discretization
and nag pde parab _1d coll (d03pdc) uses a collocation spatial discretization.

nag pde parab 1d fd ode (d03phc) and nag pde parab 1d coll ode (dO3pjc) are similar to
nag pde parab 1d fd (d03pcc) and nag pde parab 1d coll (d03pdc) respectively, except that they
provide scope for coupled differential-algebraic systems. This extended functionality allows for the
solution of more complex and more general problems, e.g., periodic boundary conditions and integro-
differential equations.

nag pde parab_1d fd ode remesh (dO3ppc) is similar to nag pde parab 1d fd ode (d03phc) but allows
remeshing to take place in the spatial direction. This facility can be very useful when the nature of the
solution in the spatial direction varies considerably over time.

3.3 Black—Scholes Equations
nag pde bs 1d (d03ncc) solves the Black—Scholes equation

of of S If
o T 0555t 5o =S

Smin < S < Smaxv tmin <t< tmaxa

for the value f of a European or American, put or call stock option. The parameters r, ¢ and o may each
be either constant or time-dependent. The values of the Greeks are also returned.

In certain cases an analytic solution of the Black—Scholes equation is available. In these cases the solution
may be computed by nag pde bs 1d analytic (d03ndc).

3.4 First-order Systems in One Space Dimension

There are three functions available for solving systems of first-order partial differential equations:
nag pde parab_1d keller (d03pec),
nag pde parab_1d keller ode (d03pkc),
nag pde parab _1d keller ode remesh (d03prc).

Equations may include nonlinear terms but the time derivative should occur linearly. There are certain
restrictions on the coefficients to ensure that the problems posed can be solved by the above functions.

The method of solution is to discretize the space derivatives using the Keller box scheme and to solve the
resulting system of ordinary differential equations using a ‘stiff” solver.

nag pde parab_1d keller (d03pec) is designed to solve a system of the form

U,
Z P;i(z,t,U, Ux)a—tj + Qi(z,t,U,U,) =0,
j=1

where i = 1,2,...,n, a <x < b, t > t,.

nag pde parab_1d keller ode (d03pkc) is similar to nag pde parab 1d keller (d03pec) except that it
provides scope for coupled differential algebraic systems. This extended functionality allows for the
solution of more complex problems.
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nag pde parab_1d keller ode remesh (d03prc) is similar to nag pde parab 1d keller ode (d03pkc) but
allows remeshing to take place in the spatial direction. This facility can be very useful when the nature of
the solution in the spatial direction varies considerably over time.

nag_pde parab_1d_keller (d03pec), nag_pde parab 1d keller ode (d03pkc) or
nag pde parab_1d keller ode remesh (d03prc) may also be used to solve systems of higher or mixed
order partial differential equations which have been reduced to first-order. Note that in general these
functions are unsuitable for hyperbolic first-order equations, for which an appropriate upwind discretization
scheme should be used (see Section 3.5 for example).

3.5 Convection-diffusion Systems

There are three functions available for solving systems of convection-diffusion equations with optional
source terms:

nag pde parab 1d cd (d03pfc),
nag pde parab_1d cd ode (d03plc),
nag pde parab_1d cd ode remesh (d03psc).

Equations may include nonlinear terms but the time derivative should occur linearly. There are certain
restrictions on the coefficients to ensure that the problems posed can be solved by the above functions, in
particular the system must be posed in conservative form (see below). The functions may also be used to
solve hyperbolic convection-only systems.

Convection terms are discretized using an upwind scheme involving a numerical flux function based on the
solution of a Riemann problem at each mesh point (LeVeque (1990)); and diffusion and source terms are
discretized using central differences. The resulting system of ordinary differential equations is solved
using a ‘stiff” solver. In the case of Euler equations for a perfect gas various approximate and exact
Riemann solvers are provided in nag pde parab 1d euler roe (d03puc), nag pde parab 1d euler osher
(d03pvc), nag pde parab 1d euler hll (d03pwc) and nag pde parab 1d euler exact (d03pxc). These
functions may be used in conjunction with nag pde parab 1d cd (dO3pfc), nag pde parab 1d cd ode
(d03plc) and nag_pde parab 1d cd ode remesh (d03psc).

nag pde parab_1d cd (d03pfc) is designed to solve systems of the form

- ou, 9 0
Pij(z,t,U)—=2+——F,(z,t,U) = Ci(z,t,U) — D;(,t,U,U,) + S;(z,t,U
j; I,.](:I:7 ) ) 8t +ax L(‘I.7 ? ) I,(x7 ? )8:1: I,(x7 ? ) ,I,) Jr I,(x7 ) )7
or hyperbolic convection-only systems of the form
- oU; OF;(x,t,U)
Po(rt.U)—=Ly 220"
FZI ot U5+ g ’

where i =1,2,...,n, a <x <b, t >t

nag pde parab_1d cd ode (d03plc) is similar to nag pde parab 1d cd (d03pfc) except that it provides
scope for coupled differential algebraic systems. This extended functionality allows for the solution of
more complex problems.

nag pde parab_1d cd ode remesh (d03psc) is similar to nag pde parab 1d cd ode (d03plc) but allows
remeshing to take place in the spatial direction. This facility can be very useful when the nature of the
solution in the spatial direction varies considerably over time.

3.6 Automatic Mesh Generation

A range of mesh generation functions are available in Chapter d06.

3.7 Utility Functions

Functions are available in the Linear Algebra Chapters for the direct and iterative solution of linear
equations. Here we point to some of the functions that may be of use in solving the linear systems that
arise from finite difference or finite element approximations to partial differential equation solutions.
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Chapters f11 should be consulted for further information and for the appropriate function documents.
Decision trees for the solution of linear systems are given in Section 4 of the f04 Chapter Introduction.

The following functions allow the direct solution of symmetric positive-definite systems:
Band nag_dpbtrf (f07hdc) and nag_dpbtrs (f07hec)

Variable band (skyline) nag real cholesky skyline (f0lmcc) and nag real cholesky skyline solve
(f04mcc)

and the following functions allow the iterative solution of symmetric positive-definite and symmetric-
indefinite systems:

Sparse nag_sparse_sym_chol fac (flljac), nag sparse sym chol sol (fl11jcc) and
nag_sparse_sym_sol (fl1jec)

The latter two functions above are black box functions which include Incomplete Cholesky, SSOR or
Jacobi preconditioning.

The following functions allow the direct solution of nonsymmetric systems:
Band nag_dgbtrf (f07bdc) and nag_dgbtrs (f07bec)
and the following functions allow the iterative solution of nonsymmetric systems:

Sparse nag_sparse_nsym_fac (flldac), nag_sparse_nsym_fac sol (fl1dcc) and
nag_sparse_nsym_sol (fl11dec)

The latter two functions above are black box functions which include incomplete LU, SSOR and Jacobi
preconditioning.

The functions nag pde interp 1d fd (d03pzc) and nag pde interp 1d coll (dO3pyc) use linear interpola-
tion to compute the solution to a parabolic problem and its first derivative at the user-specified points.
nag pde interp 1d fd (d03pzc) may be used in conjunction with nag pde parab 1d fd (d03pcc),
nag pde parab _1d keller (d03pec), nag pde parab 1d fd ode (d03phc), nag pde parab 1d keller ode
(d03pkc), nag pde parab 1d fd ode remesh (dO3ppc) and nag pde parab_1d keller ode remesh
(d03prc). nag pde interp_1d coll (d0O3pyc) may be used in conjunction with nag pde parab _1d coll
(d03pdc) and nag pde parab 1d coll ode (d03pjc).
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4 Decision Trees

Tree 1
Does PDE Does PDE see Tree.3:
havestime [T avednd S| kol
no
s o o
hyperbolic? yes branch
no
! space e coupled |——Tprocess
dimension? yes ODEs? yes required? yes
no
no
no
N/A
no
No elliptic
solvers
currently
available.
Tree 2: Hyperbolic branch
| pue dimnson |y P POE e oo st o e
no
‘ d03plc ‘
no
‘ d03pfc ‘
no
N/A |
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Tree 3: Parabolic branch

Is PDE the
1 space Black—Scholes d03ncc or
dimension? yes . yes d03ndc
equations?
no
Is PDE in Does PDE
conservative ves have coupled
form? ODEs?
no
d03pfc
no
see Tree 4:
Branch for
parabolic PDE
in non-
conservative
form
no
N/A

NAG C Library Manual

Is a remeshing

yes

Tree 4: Branch for parabolic PDE in non-conservative form

process
required?

no

d03plc

Do you want to use

Does PDE have

Is a remeshing

ves d03psc

yes

d03ppc

finite differences? yes |coupled ODEs? yes |process required?
no
‘ d03phc ‘
no
d03pcc ‘
no
Do you want to use
Chebyshes o N oDk [yes L d0onie
no
| d03pde |
no
N/A |
d03.8
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5 Index

Black—Scholes equation

ANALYTIC tieiieiieitieie ettt ettt sttt nag_pde_bs_1d_analytic (d03ndc)

finite difference .......cooiviiiiiiiiee s nag_pde_bs_1d (d03ncc)
Convection-diffusion system(s),

nonlinear,

one space dimension
using upwind difference scheme based on Riemann solvers nag_pde_parab_1d_cd (d03pfc)

First order system(s),

nonlinear,

one space dimension

using Keller box scheme .........ccccccovieviiiieneecieneenne, nag_pde_parab_1d_keller (d03pec)
Utility functions

Average values for nag pde bs 1d analytic (d03ndc) ................... nag_pde_bs_1d_means (d03nec)
Exact Riemann solver for Euler equations ................... nag_pde_parab_1d_euler_exact (d03pxc)
HLL Riemann solver for Euler equations ...............coc...... nag_pde_parab_1d_euler_hll (d03pwc)
interpolation function for collocation scheme ............cccc.c........ nag_pde_interp_1d_coll (d03pyc)
interpolation function for finite difference,

Keller box and upwind scheme ...........coccooceevivieniiienieneene nag_pde_interp_1d_fd (d03pzc)
Osher’s Riemann solver for Euler equations ............... nag_pde_parab_1d_euler_osher (d03pvc)
Roe’s Riemann solver for Euler equations ............c......... nag_pde_parab_1d_euler_roe (d03puc)

6 Functions Withdrawn or Scheduled for Withdrawal

None.
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